
Performance Comparison & Analysis of
DivSufSort-based & SAIS-based FM-Index

Sumayyea Salahuddin, Muniba Ashfaq, Madiha Sher, Laiq Hasan, Nasir Ahmad

Department of Computer Systems Engineering
University of Engineering & Technology, Peshawar Pakistan

sumayyea@nwfpuet.edu.pk, muniba@nwfpuet.edu.pk, madiha@nwfpuet.edu.pk, laiqhasan@uetpeshawar.edu.pk,
n.ahmad@uetpeshawar.edu.pk

Abstract— FM-Index and Suffix Array are closely related to
each other and are both extremely popular indexes for genomic
sequences. They are used in several popular read alignment tools,
including Bowtie, Bowtie 2, BWA, and GEM. In literature, there
exist several Suffix Array Construction Algorithms (SACA). We
have considered two popular SACA techniques: DivSufSort and
SAIS. Both techniques construct suffix array in linear time. We
have constructed FM-Index using both of these SACA
algorithms. In this paper, we comprehensively describe our FM-
Index construction approach and compare performance of these
two indexes in terms of time for different string types in the
Dataset. Our result shows that DivSufSort-based FM-Index
performs 3.67% time efficient than SAIS-based FM-Index on 10
out of 11 strings in the Dataset.

Index Terms—String Matching, Suffix Array, Suffix Sorting,
Burrows-Wheeler Transform, Wavelet Tree, FM-Index

I. INTRODUCTION
One of the most simple and handy data representations is

strings, and for their efficient processing many algorithm exists
in computer science. Suffix array is one such data structure
used for string processing [1, 2]. It is a lexicographically sorted
array of suffixes of a string. It is applied for pattern matching
(counting or finding all the occurrences of a specific pattern)
[1, 2], pattern discovery and mining (counting or finding
generic, previously unknown, repeated patterns in data),
information retrieval [3], genomic analysis (given genome’s
suffix array, perform binary search to find suffix intervals that
have P pattern as a prefix or align sequences or to find
similarities) [5, 6, 9], and data compression [8, 9]. In all these
applications, suffix array construction – a process also known
as suffix sorting – is one of the main computational
bottlenecks.

For the last 15 years or so, research is focused on Suffix
Array Construction Algorithms (SACAs) [11, 12, 13]. Most
recent algorithms tend to use little memory as possible, or find
a clever way to trade runtime, or by using compressed data
structures [14], or by using disk, or some combination of these
techniques. Another possible solution is to take advantage of
multicore processors, GPUs, and clusters. Overall analysis
time can be reduced when suffix array is constructed in
parallel. Many sequential suffix array construction algorithms
are developed but only few parallel algorithms can be found.

Thus, the problem of practical and efficient techniques
remains open.

Suffix Array is used to compute Burrows-Wheeler
Transform (BWT) of a string, where BWT is a reversible
transformation of a string that allows the string to be easily
and efficiently compressed [15]. The BWT was discovered
independently of the suffix array, but it is now known that the
two data structures are equivalent. For human genome, suffix
array needs greater than 12 GB space. BWT reduces it by
keeping the size of the index same as the string size, thereby
needing only 3 GB space. Fig. 1 shows BWT string and Suffix
Array for X = googol$ [16].

FM-index [8, 4] is a BWT-based compressed index
proposed by Ferragina & Manzini. It is used in many
state-of-the-art software tools for mapping DNA short reads
onto a known reference genome, for example, BWA [16],
Bowtie2 [17], and SOAP3-DP. These aligners keep reference
genome’s BWT in main memory and perform highly
optimized operations on BWT indices to allow very fast
mapping of individual short reads. In literature, numerous
methods exist for efficient implementation of FM-Index.
These methods are briefly reviewed in the next section. In this
paper, we have implemented FM-Index using RRR wavelet
trees and fast suffix sorting algorithms using DivSufSort [13]
and SAIS [12].

Paper consists of following sections: Section 2 gives
overview of Suffix Array (SA) and FM-Index methods.
Section 3 describes brief overview of DivSufSort and SAIS.
Section 4 describes the proposed approach used for FM-Index
construction. Section 5 presents results and analysis of our
experiments. Section concludes with discussion and future
work.

II. OVERVIEW OF SA AND FM-INDEX METHODS
In literature, numerous space and time efficient methods are

proposed for suffix sorting and FM-Index construction.
Succinct full-text self-index takes less space and allows
efficient searching for the occurrence of the pattern in text.
Many such self-indexes have been designed, few of them are
covered in this section. In [21], run-length FM-Index is
presented, which takes less space than the text. In [22], Djamal
introduces the use of relative FM-index that leads to significant

U.S. Government work not protected by U.S. copyright

The 10th International Conference on
Computer Science & Education (ICCSE 2015)
July 22-24, 2015. Fitzwilliam College, Cambridge University, UK

 64

ThA3.3

space savings in practice. In [19], Grabowski presents an
alphabet independent and compressed FM-Index
representation. It first compresses the text using Huffman code
and then applies the Burrow-Wheeler transform on the
compressed sequence. In [20], text is compressed using Kautz-
Zeckendorf coding and then applied the Burrow-Wheeler
transform that gives better results than existing succinct data
structures.

Fast and efficient suffix sorting of big data is very useful in
many applications. In [23], Larsson discusses the connection
between suffix trees and context trees and how context trees
can be used to represent BWT in a compressed and
computationally efficient manner. In [24], Sadakane proposes
another time-efficient computation of BWT based on a hybrid
comparison-based sorting algorithm. Later, suffix tree based
algorithms are improved [25, 26]. Heng Li [28] present a new
method that is fastest for indexing short reads and long reads
as well.

Fig. 1. BWT and Suffix Array for X = googol$. [16]

III. OVERVIEW OF SUFFIX ARRAY ALGORITHMS

Let 0 1 1... NS s s s −= be a string of length N. Let

1[,] ...i i jS i j s s s+= be substrings of S. Each is is a member

of finite alphabet∑ and size of alphabet is ∑ . String is ended
by special character “$” known as sentinel. It is not the
member of alphabet. Let 1 1[,] , ,... ,$i i i NSuf S i N s s s+ −= =
denotes the suffix starting at i and running to $. The suffix
array SA built on S is an array of length N storing sequence of
indexes 0 1 1, ,..., Np p p − such that

1 10
...

Np p pSuf Suf Suf
−

< < < ,

where lexicographical order is represented via “<” sign [29].
For a sample string “googol$”, Fig. 1 shows its suffix array as
well as Burrows-Wheeler transform string [16].

For time-efficient and space-efficient construction of suffix
array, several suffix array construction algorithms (SACA)
such as Ko-Aluru algorithm (KA) [27], DivSufSort [13],
Induced Sorting algorithm (SAIS) [12], Bucket-Pointer
Refinement algorithm (BPR), and MSufSort have been
proposed. In this work, we consider two linear-time algorithms

a) SAIS and b) DivSufSort for suffix array construction. In this
section, we briefly discuss each of these techniques.

Fig. 2. SAIS Algorithm. [12]

A. SAIS
SAIS stands for Suffix Array Induced Sorting [12]. It

constructs suffix array in linear time and is considered as
benchmark in suffix sorting algorithms. It is implemented in
the state-of-the-art BWA [16] sequence aligner.

Fig. 2 shows SAIS algorithm. According to Mori [12], it is
a recursive divide-and-conquer procedure that consists of two
linear components: problem reduction and solution induction.
In problem reduction: string is scanned first to classify each
character is as S- or L- type. A character is is S-type if

1i is s +< or 1 1i i is s and Suf+ += is S-type; and L-type if

1i is s +> or 1 1i i is s and suf+ += is L-type. These types
are stored in n-bit Boolean array t where S-type is represented
by 1 and L-type is represented by 0. A character is is called

LMS if is is S-type and 1is − is L-type. A suffix iSuf is called

LMS if is is an LMS character. An LMS-substring is a

substring [,]S i j with both is and js LMS characters and

there is no other LMS character in substring for i j≠ or
sentinel. Array t is scanned to find all LMS-substrings that
locates first occurrence of s-type and stores in P1 array. Then
all LMS-substrings are induced sorted using array P1 and
bucket B. Each LMS-substring is named by its bucket index to
get a new shortened string. In solution induction: problem is
solved by traversing recursively once to induce sort all L-type
suffixes from the sorted LMS suffixes and traversed another
time to induce sort all the type-S suffixes from the sorted L-
suffixes.

Fig. 3 shows the running example of SAIS algorithm for
string “mmiissiissiippii$” [12]. Line 3 shows type array t
entries and at line 4 all the LMS-suffixes in S are marked by *.
These are 2, 6, 10, and 16. Line 6 shows the five buckets for all
the suffixes marked by their first character i.e. $, i, m, p, and s.

 65

ThA3.3

Line 7 shows suffix array SA with each bucket delimited by a
pair of braces and content initialized by -1. Next indices of all
LMS-Suffixes i.e. 2, 6, 10, and 16 are put into their respective
buckets from end to head. Then all the L-type LMS-prefixes
are induced sorted as follows. Line 11 shows the current head
of each bucket marked by “^” symbol. SA is scanned from left
to right to visit the index marked by “@” symbol. When
visiting the “@” symbol index, previous index type is checked
to know if it is L-type or not. If L-type than that index is
appended in SA as shown in lines 12-28 and bucket head is
respectively forwarded one step to the right. Next, all the LMS-
prefixes are induced sorted from stored L-type prefixes as
follows. Each bucket’s end is marked and then SA is scanned
from right to left. When visiting “@” symbol, previous index
type is checked to know if it is S-type or not. If S-type than that
is appended in SA as shown in lines 32-44 and bucket head is
forwarded to the left. At the end, all LMS-prefixed are sorted
in their order shown in line 44.

Fig. 3. SAIS Algorithm Example. [12].

B. DivSufSort
DivSufSort [13] also constructs suffix array in linear time.

It is an open source library developed by Yuta Mori. It is used
for the forward BWT in ncomp (the engine for WinRK) and in
early version of bcm. It is an improvement of Itoh-Tanaka’s
two-stage (ITTS) algorithm [29], which is very fast and

efficient suffix array method for both small and large texts. It
comprises of four steps: In first step, type B* suffixes are
selected. It is done by dividing suffixes into two types A and B
such that a character is is type A if 1 1i iSuf Suf +> and type B

if 1 1i iSuf Suf +≤ where symbols 1 1,≤ > denotes the
lexicographic order between two strings. Next suffixes of type
B whose subsequent suffix is a type A are selected. These
suffixes are called type B*. In second step, type B* suffixes are
sorted using substring sorting technique given in KA [27]. To
reduce complexity in this step, it detects and induces tandem
repeats using MSufSort. In step 3, sorted suffixes are scanned
from right to left. For each suffix []SA i , if previous suffix
array index i.e. [] 1SA i − is a type B suffix than current suffix
is moved to the last empty position of its bucket. In final step,
suffix array is completed by scanning sorted suffixes from left
to right like Itoh-Tanaka algorithm or KA algorithm [27].

IV. FM-INDEX METHODOLOGY
Fig. 4 shows the block diagram of our FM-Index

construction method. For a given string, first suffix array (SA)
is constructed using DivSufSort and SAIS techniques. Next
using SA, Burrows-Wheeler Transform (BWT) is computed.
The combination of SA with BWT forms FM-Index, which
enables backward search and self- indexing. Next, wavelet tree
is used to encode BWT into balanced binary-tree of bit vectors.
Finally, Wavelet tree nodes are stored as RRR sequences for
fast binary rank queries and compression. Each of these blocks
is discussed briefly as follows.

Fig. 4. Block Diagram showing FM-Index Construction & Efficient Rank
Query Implementation

A. Suffix Array (SA)
For string S, Suffix Array can be constructed as:

1) Make an array of pointers to all suffixes iSuf

 66

ThA3.3

2) Use lexicographical order of suffixes to sort their
respective pointers.

Fig. 5 shows an example string $T ATGACGGATCA= and
its suffix array. We construct suffix array using two linear time
algorithms: DivSufSort and SAIS in this paper. Each of these
techniques is discussed in section 3.

Fig. 5. Suffix Array for $T ATGACGGATCA=

Fig. 6. SA and BWT for $T ATGACGGATCA=

B. Burrows-Wheeler Transform (BWT)
Given a string of length N, Burrows-Wheeler Transform

(BWT) is computed from Suffix Array and the original string T
as shown in Eq. 1.

() ()1 , 0

[]
$, () 0

T S i S i
B i

S i

⎧ − ≠⎡ ⎤⎪ ⎣ ⎦= ⎨
=⎪⎩

 (1)

Fig. 6 shows BWT for string $T ATGACGGATCA= .

C. Wavelet Tree (WT)
Rank query on the string S is defined as (),rank i sym m= ,

where m represents occurrence of symbol sym in range []1,S i

e.g. ()5, 2rank A = for string $T ATGACGGATCA= . If

0i ≤ then (), 0rank i sym = .

 To answer rank queries, BWT is encoded using the
wavelet tree as follows:

1) Encode half the alphabet as 0, and other half as 1,
for example:

 { }
{ }

$, , , ,

() 0,0,0,1,1

A C G T

encode

∑ =

∑ =
 (2)

2) Represent every 0-coded symbols { }$, ,A C as

one sub-tree and 1-coded symbols { },G T as other
sub-tree.

3) Encoding and branching is applied to each
sub-tree until only one symbol remains.

Fig. 7 shows the Wavelet Tree encoding for
$T ATGACGGATCA= BWT. After tree construction, rank

query on WT is performed using logυ binary rank queries on
the bit vectors.

Fig. 7. Wavelet Tree for BWT of string $T ATGACGGATCA=

D. RRR Sequence
Raman [10] purposed a method to encode bit sequence that

answers the binary rank queries in O(1) time. Resultant
sequence is known as RRR sequence. It also provides implicit
compression. Given the wavelet tree, bit vectors corresponding
to its node are encoded as RRR sequences.

V. RESULTS & DISCUSSION
We have implemented FM-Index in C++. For SAIS and

DivSufSort, we have taken the code available at [12] and [13].
For Wavelet Tree and RRR sequence, libcds library is used.
All the programs are compiled in gcc with following system
specifications: 3.6 GHz Intel Core i3, 4GB RAM, and Ubuntu
14 operating system.

 67

ThA3.3

To evaluate the performance of implemented index
structure, dataset available at [7] is used. It consists of three
categories: Artificial Strings, DNA Sequences, and Real World
Strings. Table 1 shows the strings in our dataset. It can be seen
that we have taken into account strings of varying size and
alphabets. For each sample string, each index algorithm is
executed 10 times and average execution time is measured.

TABLE I. DATASET

TABLE II. AVERAGE EXECUTION TIME OF SUFFIX ARRAYS AND FM-
INDEX FOR DATASET STRINGS

Table 2 shows the average execution time of both suffix

arrays (DivSufSort & SAIS) and their corresponding
FM-Indexes. It can be seen that DivSufSort suffix array and its
FM-Index takes less execution time for 10 out of 11 strings in
dataset compared to SAIS suffix array and its FM-Index. The
minimum execution time of 0.15 for DivSufSort, 0.18 for
SAIS, 1.25 for DivSufSort-based FM-Index, and 1.29 for
SAIS-based FM-Index is observed for “world” string while the

maximum execution time of 6.12 for DivSufSort, 8.24 for
SAIS, 49.26 for DivSufSort-based FM-Index, and 51.09 for
SAIS-based FM-Index is observed for “gcc”. The reason
DivSufSort & its FM-Index performed better than SAIS & its
FM-Index is that DivSufSort is hybrid approach using
Itoh-Tanaka’s two-stage (ITTS) algorithm for character
representation and KA & MSufSort algorithms for suffix
sorting while SAIS uses LMS substrings and induced sorting
for suffix array construction. If induced sorting is optimized in
terms of time or rigorous characterization and analysis is
conducted as implemented in [18], it can outperform
DivSufSort suffix array and correspondingly FM-Index.

Fig. 8. Performance Comparison of Suffix Arrays for Strings in

Dataset

Fig. 9. Performance Comparison of FM-Indexes for Strings in Dataset

The trend in terms of time efficiency of two suffix arrays
with respect to different strings is shown in Fig. 8 while the

Dataset

Category Name Size Alphabets

Artificial Strings

Fibonacci 20000000 2

period_1000 20000000 26

random 20000000 26

DNA Sequence

3Ecoli.dna 14776363 5

4Chlamydophila.dna 4856123 6

H_sapiens_Chr22.dna 34553758 5

Real World

Strings

world 2473399 94

jdk_50M 50000000 110

howto 39422104 197

jdk 69728898 113

gcc 86630400 150

Name DivSufSort
SA

SAIS
SA

DivSufSort
FMI

SAIS
FMI

Fibonacci 2.72 1.29 6.48 5.01

period_1000 1.09 1.38 7.78 8.04

Random 2.07 2.81 10.02 10.79

3Ecoli.dna 1.36 1.49 5.11 5.22

4Chlamydophila.dna 0.41 0.44 1.64 1.67

H_sapiens_Chr22.dna 3.01 3.72 11.92 12.63

World 0.15 0.18 1.25 1.29

jdk_50M 3.62 4.43 25.58 26.42

Howto 3.10 4.26 22.86 24.13

Jdk 5.32 6.06 35.98 36.59

Gcc 6.12 8.24 49.26 51.09

 68

ThA3.3

trend in terms of time efficiency of two FM-Indexes with
respect to different strings is shown in Fig. 9. It can be seen
that DivSufSort Suffix Array performs 18.21% time efficient
than SAIS Suffix Array while DivSufSort-based FM-Index
performs 3.67% time efficient than SAIS-based FM-Index on
10 out of 11 strings in the dataset.

VI. CONCLUSION
To find information & infer patterns in large texts and

DNA sequences, FM-Index is used. We have implemented two
FM-Index data structures using DivSufSort and SAIS suffix
sorting algorithms. BWT of given string is encoded using RRR
wavelet trees to solve rank queries efficiently in O(1) time. Our
results show that DivSufSort-based FM-Index performs 3.67%
better than SAIS-based FM-Index on 10 out of 11 strings in
dataset.

REFERENCES
[1] Manber, Udi, and Gene Myers. "Suffix arrays: a new method for

on-line string searches." SIAM Journal on Computing 22, no. 5
(1993): 935-948.

[2] Gonnet, Gaston H., Ricardo A. Baeza-Yates, and Tim Snider.
"New Indices for Text: Pat Trees and Pat Arrays." Eds.:
Information Retrieval: Data Structures & Algorithms, Prentice-
Hall (1992): 66-82.

[3] Culpepper, J. Shane, Gonzalo Navarro, Simon J. Puglisi, and
Andrew Turpin. "Top-k ranked document search in general text
databases." In Algorithms–ESA 2010, pp. 194-205. Springer
Berlin Heidelberg, 2010.

[4] Ferragina, Paolo, and Giovanni Manzini. "Opportunistic data
structures with applications." In Foundations of Computer
Science, 2000. Proceedings. 41st Annual Symposium on, pp.
390-398. IEEE, 2000.

[5] Abouelhoda, Mohamed Ibrahim, Stefan Kurtz, and Enno
Ohlebusch. "Replacing suffix trees with enhanced suffix
arrays." Journal of Discrete Algorithms 2, no. 1 (2004): 53-86.

[6] Flicek, Paul, and Ewan Birney. "Sense from sequence reads:
methods for alignment and assembly." Nature methods 6 (2009):
S6-S12.

[7] Schürmann, Klaus-Bernd, and Jens Stoye. "An incomplex
algorithm for fast suffix array construction." Software: Practice
and Experience 37, no. 3 (2007): 309-329.

[8] Ferragina, Paolo, and Giovanni Manzini. "Indexing compressed
text." Journal of the ACM (JACM) 52, no. 4 (2005): 552-581.

[9] Deogun, Jitender S., Jingyi Yang, and Fangrui Ma. "EMAGEN:
An efficient approach to multiple whole genome alignment."
In Proceedings of the second conference on Asia-Pacific
bioinformatics-Volume 29, pp. 113-122. Australian Computer
Society, Inc., 2004.

[10] Raman, Rajeev, Venkatesh Raman, and S. Srinivasa Rao.
"Succinct indexable dictionaries with applications to encoding
k-ary trees and multisets." In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms, pp. 233-
242. Society for Industrial and Applied Mathematics, 2002.

[11] Puglisi, Simon J., William F. Smyth, and Andrew H. Turpin. "A
taxonomy of suffix array construction algorithms." ACM
Computing Surveys (CSUR) 39, no. 2 (2007): 4.

[12] Mori, Y. "SAIS: An implementation of the induced sorting
algorithm." (2008).

[13] Mori, Y. "Short description of improved two-stage suffix sorting
algorithm." (2005).

[14] Grossi, Roberto, Ankur Gupta, and Jeffrey Scott Vitter. "High-
order entropy-compressed text indexes." In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete
algorithms, pp. 841-850. Society for Industrial and Applied
Mathematics, 2003.

[15] Burrows, Michael, and David J. Wheeler. "A block-sorting
lossless data compression algorithm." Technical report 124,
Palo Alto, CA, Digital Equipment Corporation (1994).

[16] Li, Heng, and Richard Durbin. "Fast and accurate short read
alignment with Burrows-Wheeler transform." Bioinformatics 25,
no. 14 (2009): 1754-1760.

[17] Langmead, Ben, and Steven L. Salzberg. "Fast gapped-read
alignment with Bowtie 2." Nature methods 9, no. 4 (2012): 357-
359.

[18] Timoshevskaya, Nataliya, and Wu-chun Feng. "SAIS-OPT: On
the characterization and optimization of the SA-IS algorithm for
suffix array construction." In Computational Advances in Bio
and Medical Sciences (ICCABS), 2014 IEEE 4th International
Conference on, pp. 1-6. IEEE, 2014.

[19] Grabowski, Szymon, Gonzalo Navarro, RAFAŁ
PRZYWARSKI, Alejandro Salinger, and Veli Mäkinen. "A
simple alphabet-independent FM-index." International Journal
of Foundations of Computer Science 17, no. 06 (2006): 1365-
1384.

[20] Przywarski, Rafal, Szymon Grabowski, Gonzalo Navarro, and
Alejandro Salinger. "FM-KZ: An even simpler alphabet-
independent FM-index." In Stringology, pp. 226-241. 2006.

[21] Mäkinen, Veli, and Gonzalo Navarro. "Succinct suffix arrays
based on run-length encoding." In Combinatorial Pattern
Matching, pp. 45-56. Springer Berlin Heidelberg, 2005.

[22] Belazzougui, Djamal, Travis Gagie, Simon Gog, Giovanni
Manzini, and Jouni Sirén. "Relative FM-Indexes." In String
Processing and Information Retrieval, pp. 52-64. Springer
International Publishing, 2014.

[23] Larsson, N. Jesper. "The context trees of block sorting
compression." In Data Compression Conference, 1998. DCC'98.
Proceedings, pp. 189-198. IEEE, 1998.

[24] Sadakane, Kunihiko. "A fast algorithm for making suffix arrays
and for Burrows-Wheeler transformation." In Data Compression
Conference, 1998. DCC'98. Proceedings, pp. 129-138. IEEE,
1998.

[25] Larsson, N. Jesper, and Kunihiko. Sadakane, “Faster suffix
sorting”, Technical Report LU–CS–TR: 99–214,
LUNDFD6/(NFCS–3140)/1–20/(1999), Dept. of Computer
Science, Lund University, 1999.

[26] Larsson, N. Jesper, “Structures of string matching and data
compression”, PhD thesis, Dept. of Computer Science, Lund
University, 1999.

[27] Ko, Pang, and Srinivas Aluru. "Space efficient linear time
construction of suffix arrays." In Combinatorial Pattern
Matching, pp. 200-210. Springer Berlin Heidelberg, 2003.

[28] Li, Heng. “Fast construction of FM-index for long sequence
reads”. Bioinformatics (2014): btu541.

[29] Itoh, Hideo, and Hozumi Tanaka. "An efficient method for in
memory construction of suffix arrays." In String Processing and
Information Retrieval Symposium, 1999 and International
Workshop on Groupware, pp. 81-88. IEEE, 1999.

 69

ThA3.3

